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Deep Learning: A Primer for 
Radiologists1

Deep learning is a class of machine learning methods that are gain-
ing success and attracting interest in many domains, including com-
puter vision, speech recognition, natural language processing, and 
playing games. Deep learning methods produce a mapping from 
raw inputs to desired outputs (eg, image classes). Unlike traditional 
machine learning methods, which require hand-engineered feature 
extraction from inputs, deep learning methods learn these features 
directly from data. With the advent of large datasets and increased 
computing power, these methods can produce models with excep-
tional performance. These models are multilayer artificial neural 
networks, loosely inspired by biologic neural systems. Weighted 
connections between nodes (neurons) in the network are iteratively 
adjusted based on example pairs of inputs and target outputs by 
back-propagating a corrective error signal through the network. 
For computer vision tasks, convolutional neural networks (CNNs) 
have proven to be effective. Recently, several clinical applications 
of CNNs have been proposed and studied in radiology for clas-
sification, detection, and segmentation tasks. This article reviews 
the key concepts of deep learning for clinical radiologists, discusses 
technical requirements, describes emerging applications in clinical 
radiology, and outlines limitations and future directions in this field. 
Radiologists should become familiar with the principles and poten-
tial applications of deep learning in medical imaging.
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After completing this journal-based SA-CME activity, participants will be able to:
 ■ Discuss the key concepts underlying deep learning with CNNs.

 ■ Describe emerging applications of deep learning techniques to radiology for lesion 
classification, detection, and segmentation.

 ■ List key technical requirements in terms of dataset, hardware, and software required 
to perform deep learning.

See www.rsna.org/education/search/RG.

SA-CME LEARNING OBJECTIVES

Introduction
Medical image analysis and interpretation are fundamental cognitive 
tasks of a diagnostic radiologist. Effective computer automation of 
these tasks has historically been difficult despite technical advances 
in computer vision, a discipline dedicated to the problem of impart-
ing visual understanding to a computer system. Recently, however, 
computer science researchers using a technique called deep learn-
ing have demonstrated breakthrough performance improvements 
in a variety of complex tasks, including image classification, object 
detection, speech recognition, language translation, natural language 
processing, and playing games (1,2).
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works with many layers. This article focuses on 
CNNs (or “convnets”), since they are the most 
commonly used for image data. While other deep 
learning architectures exist for processing text in 
radiology reports (with natural language process-
ing) or audio, these topics are beyond the scope 
of this article (11).

Definitions
The following terms from computer science are 
helpful for defining the context of deep learning.

Artificial Intelligence
Artificial intelligence is the branch of computer 
science devoted to creating systems to perform 
tasks that ordinarily require human intelligence. 
This is a broad umbrella term encompassing a 
wide variety of subfields and techniques; in this 
article, we focus on deep learning as a type of 
machine learning (Fig 1).

Machine Learning
Machine learning is the subfield of artificial intel-
ligence in which algorithms are trained to per-
form tasks by learning patterns from data rather 
than by explicit programming (13). In classic 
machine learning, expert humans discern and en-
code features that appear distinctive in the data, 
and statistical techniques are used to organize or 
segregate the data on the basis of these features 
(Fig 2). For instance, for the purpose of analyzing 
an image, an expert in image processing might 
program an algorithm to decompose input im-
ages into basic elements of edges, gradients, and 
textures. Statistical analysis of the presence of 
these features in a given image can then be used 
to classify or interpret the image.

However, for many complex computer vision 
tasks, it is typically not clear even to an expert 
how to define the optimal image features for a 
machine learning algorithm to use. For example, 
it may not be obvious how to teach a computer to 
recognize an organ on the basis of pixel bright-
ness (Fig 3). Therefore, it may be desirable for a 
computer system to not only learn the mappings 
of features to desired outputs, but to learn and 
optimize the features themselves.

Representation Learning
Representation learning is a type of machine learn-
ing in which no feature engineering is used. Instead, 
the algorithm learns on its own the best features 
to classify the provided data. With enough training 
examples, a system based on representation learn-
ing could potentially classify data better than with 
hand-engineered features. The challenge is in how 
a machine learning system could learn potentially 
complex features directly from raw data.

The success of deep learning with convolu-
tional neural networks (CNNs) for images in 
nonmedical domains has fostered hopes for and 
research toward revolutionizing the automated 
analysis of medical images. At the same time, it 
has raised the necessity for clinical radiologists 
to become familiar with this rapidly developing 
technology, as some artificial intelligence experts 
have speculated that deep learning systems may 
soon surpass radiologists for certain image inter-
pretation tasks (3,4).

Recently, these deep learning algorithms have 
been applied to medical imaging in several clini-
cal settings, such as detection of breast cancer on 
mammograms (5,6), segmentation of liver metas-
tases with computed tomography (CT) (7), brain 
tumor segmentation with magnetic resonance 
(MR) imaging (8), classification of interstitial 
lung disease with high-resolution chest CT (9), 
and generation of relevant labels pertaining to the 
content of medical images (10).

In this article, we review the premise and 
promise of deep learning by defining key terms in 
artificial intelligence and by reviewing the histori-
cal context that led to the emergence of deep 
learning systems. We describe the basic structure 
of neural networks and the CNN architecture. We 
briefly summarize technical and data prerequi-
sites for deep learning. Finally, we explore types 
of emerging clinical applications and outline cur-
rent limitations and future directions in the field.

What Is Deep Learning?
Deep learning is a class of machine learning 
algorithms characterized by the use of neural net-

TEACHING POINTS
 ■ Deep learning is a type of representation learning in which 

the algorithm learns a composition of features that reflect a 
hierarchy of structures in the data. Complex representations 
are expressed in terms of simpler representations.

 ■ Although neural networks have been used for decades, in re-
cent years three key factors have enabled the training of large 
neural networks: (a) the availability of large quantities of la-
beled data, (b) inexpensive and powerful parallel computing 
hardware, and (c) improvements in training techniques and 
architectures.

 ■ The basic unit of an artificial neural network, the artificial 
neuron or node, is a simplified model that mimics the basic 
mechanism found in the biologic neuron.

 ■ Deep CNNs exploit the compositional structure of natural 
images so that shifts and deformations of objects in the im-
ages do not significantly affect the overall performance of the 
network.

 ■ The creation of these large databases of labeled medical im-
ages and many associated challenges will be fundamental 
to foster future research in deep learning applied to medical 
images.
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1980s (15). However, success in training the deep 
multilayer neural networks needed for hierarchi-
cal representations was limited by the difficulty 
of the underlying optimization problem as well as 
the limits of the computing hardware of that early 
era. Consequently, research attention in machine 
learning for the next few decades drifted toward 
other techniques such as kernel methods and deci-
sion trees.

Although neural networks have been used for 
decades, in recent years three key factors have 
enabled the training of large neural networks: 
(a) the availability of large quantities of labeled 
data, (b) in  expensive and powerful parallel 
computing hardware, and (c) improvements in 
training techniques and architectures.

For processing images, a deep learning archi-
tecture known as the convolutional neural network 
has become dominant. CNNs of increasing depth 
and complexity have gained significant attention 
since 2012, when the winning entry in an annual 
international image classification competition 

Deep Learning
Deep learning is a type of representation learn-
ing in which the algorithm learns a composition 
of features that reflect a hierarchy of structures in 
the data. Complex representations are expressed 
in terms of simpler representations (12). These 
deep learning systems propose an end-to-end ap-
proach by learning simple features (such as signal 
intensity, edges, and textures) as components of 
more complex features such as shapes, lesions, 
or organs, therefore leveraging the compositional 
nature of images (Fig 4).

Historical Context
Deep learning systems encode features by using 
an architecture of artificial neural networks, an 
approach consisting of connected nodes inspired 
by biologic neural networks. Neural networks 
have a long history in artificial intelligence dat-
ing back to the 1950s (14). Systematic methods 
to train neural networks on the basis of a process 
called back-propagation were developed in the 

Figure 1. Venn diagram. Artificial intelligence is a subfield of computer 
science devoted to creating systems to perform tasks that ordinarily re-
quire human intelligence. Machine learning is a subfield of artificial intelli-
gence where computers are trained to perform tasks without explicit pro-
gramming. Classically, humans engineer features by which a computer 
can learn to distinguish patterns of data. Representation learning is a type 
of machine learning where no feature engineering is used; instead, the 
computer learns the features by which to classify the provided data. Deep 
learning is a type of representation learning where the learned features 
are compositional or hierarchical. (Adapted from reference 12.)

Figure 2. Classic machine learning depends on carefully designed features, requiring human expertise 
and complicated task-specific optimization. Deep learning bypasses feature engineering by taking ad-
vantage of large quantities of data and flexible hierarchical models. Deep learning has recently achieved 
striking performance improvements in diverse fields such as image classification, speech recognition, 
natural language processing, and playing games. Blue boxes represent components learned by fitting 
a model to example data; deep learning allows learning an end-to-end mapping from the input to the 
output. (Adapted from reference 12.)
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(the ImageNet Large Scale Visual Recogni-
tion Challenge) used a deep CNN to produce a 
startling performance breakthrough compared 
with traditional computer vision techniques (16). 
Since 2012, all winning entries in this competi-
tion have used CNNs and have even exceeded 
human performance (17).

Neural Networks
In the brain, neurons exchange information via 
chemical and electrical synapses. Electrochemi-

cal signals are propagated from the synaptic 
area through the dendrites toward the soma, the 
body of the cell (Fig 5). When a certain excita-
tion threshold is reached, the cell releases an ac-
tivation signal through its axon toward synapses 
with neighboring neurons. Complex signals 
can be encoded by networks of neurons on the 
basis of this paradigm; for instance, a hierarchy 
of neurons in the visual cortex is able to detect 
edges by combining signals from independent 
visual receptors.

Figure 3. Human versus computer vision. A human expert easily 
classifies this image as an image of the right kidney. Why is this 
task difficult for a computer? Instead of shades of gray, a computer 
“sees” a matrix of numbers representing pixel brightness. Com-
puter vision typically involves computing the presence of numeri-
cal patterns (features) in this matrix, then applying machine learn-
ing algorithms to distinguish images on the basis of these features.

Figure 4. Computer vision tasks such as detection, segmentation, and classification are typically carried out with algorithms 
based on features, classifiers, and shape extraction methods. Recent approaches based on deep learning represent an impor-
tant paradigm shift where features are not handcrafted, but learned in an end-to-end fashion. Features describe the appear-
ance of organs and points of interest in medical images. Classifiers integrate features to output a decision. Shape extraction 
and regularization recover a consistent shape despite classification noise. Deep learning proposes an end-to-end approach 
where features are learned to maximize the classifier’s performance. Shape regularization becomes implicit and often requires 
only mild postprocessing to recover the target shape.
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Artificial neural networks are inspired by this bi-
ologic process. The basic unit of an artificial neural 
network, the artificial neuron or node, is a simpli-
fied model that mimics the basic mechanism found 
in the biologic neuron. The artificial neuron takes as 
an input a set of values representing features, each 
multiplied by a corresponding weight. The weighted 
features are summed and passed through a non-
linear activation function. In this way, an artificial 
neuron can be viewed as producing a decision by 
weighing a set of evidence.

Although an individual artificial neuron is sim-
ple, neural network architectures called multilayer 
perceptrons that consist of thousands of neurons 
can represent very complex nonlinear functions. 

These multilayer perceptrons are typically con-
structed by assembling multiple neurons to form a 
layer and by stacking these layers, connecting the 
output of one layer to the input of the following 
layer. The “deep” aspect of deep learning refers 
to the multilayer architecture of multilayer per-
ceptrons (Fig 6). The first layer, called the input 
layer, represents input data such as individual pixel 
intensities, while the output layer produces target 
values such as a classification result. The interme-
diate layers of multilayer perceptrons are called 
hidden layers, since they do not directly produce 
visible desired outputs, but rather compute inter-
mediate representations of the input features that 
are useful in the inference process.

Figure 5.  Conceptual analogy between components of biologic neurons (a) and artificial neurons (b). The concept of neural 
networks stems from biologic inspiration. (a) In the visual cortex, there is a neural network able to detect edges from what is seen 
by the retina (gray circles = receptive areas of the retina). When the inner parts (smaller circles) of the three receptors are activated 
simultaneously, the simple cell neuron integrates the three signals and transmits an edge detection signal. (b) An artificial neural 
network is composed of interconnected artificial neurons. Each artificial neuron implements a simple classifier model, which 
outputs a decision signal based on a weighted sum of evidences, and an activation function, which integrates signals from previ-
ous neurons. Hundreds of these basic computing units are assembled together to build an artificial neural network computing 
device. The weights of the network are trained via a learning algorithm where pairs of input signals and desired output decisions 
are presented, much like the brain, which relies on external sensory stimuli to learn to achieve specific tasks.
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By stacking multiple layers, a network can 
represent a hierarchy of features that are an in-
creasingly complex composition of low-level input 
features, thereby modeling higher levels of abstrac-
tions in the data. The compositional power of 
deep architectures allows neural networks to infer 
decisions on the basis of abstract concepts.

Obtaining a prediction from a sample observa-
tion (eg, an image) using a neural network involves 
computing sequentially the activation of each node 
of each layer, starting from the input layer up to 
the output layer, a process called forward propa-
gation. In the setting of a classification task, the 
activation of the output layer is typically submit-
ted to a softmax function, a normalized “squash-
ing” function that maps a vector of real values to 
a probability distribution. Therefore, the softmax 
function converts raw activation signals from the 
output layer to target class probabilities (Fig 7).

A neural network is trained by adjusting the 
parameters, which consist of the weights and bi-
ases of each node. Modern neural networks con-
tain millions of such parameters. Starting from 
a random initial configuration, the parameters 
are adjusted via an optimization algorithm called 

gradient descent, which attempts to find a set of 
parameters that performs well on a training data-
set (Fig 8). Each time predictions are computed 
from a given data sample (forward propaga-
tion), the performance of the network is assessed 
through a loss (error) function that quantitatively 
measures the inaccuracy of the prediction. Each 
parameter of the network is then adjusted by 
small increments in the direction that minimizes 
the loss, a process called back-propagation.

Owing to memory limitations and algorithmic 
advantages, the update of parameters is com-
puted from a randomly selected subset of the 
training data at each iteration, a commonly used 
optimization method called stochastic gradient 
descent. After this training procedure is per-
formed multiple times for each sample in the 
training dataset, the parameters approach values 
that maximize the model accuracy.

Deep CNNs
The composition of features in deep neural net-
works is enabled by a property common to all nat-
ural images: local characteristics and regularities 
dominate, and so complicated parts can be built 

Figure 6. The basis for most deep learning research is the artificial neu-
ral network, a computational framework of interconnected nodes in-
spired by biologic neural networks. The “deep” aspect of deep learning 
refers to the multilayer architecture of these networks, which contain 
multiple hidden layers of nodes between the input and output nodes. 
This example has three input nodes, two hidden layers (each with four 
nodes), and two output nodes.

Figure 7. Softmax classifier. For classification, the output nodes of a neural network can be regarded as unnormalized log prob-
abilities for each class. The softmax function converts these into class probabilities: During training, a “loss” value is computed to 
represent the error between the network’s output-predicted class and the actual class of the input. This error is back-propagated from 
the final layer to adjust the weights throughout the network in a manner that minimizes the loss.
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from small local features. CNNs exploit the same 
property to efficiently process larger and more 
variable inputs than is reasonable with multilayer 
perceptrons. Unlike CNNs, multilayer perceptrons 
perform poorly on images in which the object of 
interest tends to vary in shape, orientation, and 
position because they must encode redundant 
representations for the many feature arrangements 
that this results in.

On the other hand, a CNN introduces some ro-
bustness to these variations by passing each feature 
detector over every part of the image in a convolu-
tion operation. Each feature detector is then lim-
ited to detecting local features in its immediate in-
put, which is acceptable for natural images. Thus, 

Figure 8. Learning process. Weights used by artificial neurons can nowadays amount to bil-
lions of parameters within a deep neural network. These parameters, randomly initialized, are 
progressively adjusted (a) via an optimization algorithm called gradient descent (b). When 
presenting a series of training samples to the network, a loss function measures quantitatively 
how far the prediction is to the target class or regression value. All parameters are then slightly 
updated in the direction that will favor minimization of the loss function.

deep CNNs exploit the compositional structure of 
natural images so that shifts and deformations of 
objects in the images do not significantly affect the 
overall performance of the network. They address 
complex tasks such as image classification with an 
efficient model architecture based on the following 
components: convolutions, activation functions, 
pooling, and softmax function.

Convolutions
This type of network relies on convolution opera-
tions: the linear application of a filter or kernel 
to local neighborhoods of points in an input (Fig 
9a). Common image filters in PACS (picture 
archiving and communication system) worksta-
tions, such as those for image sharpening and 
smoothing, work using such operations. Filters 
representing features are usually defined by a 
small grid of weights (eg, 3 3 3). If an input has 
n channels (eg, different color channels), then the 
size of the filters would be n 3 3 3 3.

Since a feature may occur anywhere in the 
image, the filters’ weights are shared across all 
the image positions. Thus, image features can be 
modeled with fewer parameters, increasing model 
efficiency. Typically, multiple different convolu-
tional filters are learned for each layer, yielding 
many different feature maps, each highlighting 
where different characteristics of the input image 
or of the previous hidden layer have been de-
tected (Fig 9b).
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Activation Function
A key component of deep neural networks is the 
activation function, a nonlinear function that is 
applied to the outputs of linear operations such 
as convolutions. Stacking these allows the input 
to be mapped to a representation that is linearly 
separable by a linear classifier. The activation 
function is inspired by observations regarding the 
basic behavior of biologic neurons. The role of an 
activation function in a neural network layer is 
typically that of a selection function, which allows 
some features to pass through to the output.

Historically, sigmoidal and hyperbolic tangent 
functions were used, as they were considered to 
be biologically plausible (18). Today, most CNNs 
now use a rectified linear unit (ReLU) in their 
hidden layers. This activation function is perfectly 
linear for positive inputs, passing them through 

unchanged, and blocks negative inputs (ie, evalu-
ates to zero) (17,19,20).

Downsampling
An additional component of CNNs is the down-
sampling (or pooling) operation. This operation 
groups feature map activations into a lower-
resolution feature map (Fig 10a). Downsampling 
increases the effective scope, or receptive field, of 
subsequent filters. Moreover, combined with con-
volutions, this operation also reduces the model’s 
sensitivity to small shifts of the objects, since 
deeper layers rely increasingly on spatially low-
resolution but contextually rich information. An 
added benefit of downsampling is the reduction 
of a model’s memory footprint; for instance, the 
size of each feature map will decrease by four each 
time a 2 3 2 pooling operator is applied.

Figure  9.  Convolutions. For each neuron to 
consider each pixel of a 512 3 512 image as 
input values to a neural network, an enormous 
amount of computer memory would be re-
quired. Instead, only the parameters of special-
ized filter operators, called convolutions, are 
learned. This mathematical operation describes 
the multiplication of local neighbors of a given 
pixel by a small array of learned parameters 
called a kernel. (a) Diagram shows the convolu-
tion of an image by a typical 3 3 3 kernel. The 
image pixels are multiplied by the nine values of 
a 3 3 3 kernel (red) and summed to produce the 
value of the blue pixel. This operation is repeated 
to cover the whole image. (b) By learning mean-
ingful kernels, this operation mimics the extrac-
tion of visual features such as edges and corners, 
just like the visual cortex does. Convolutions are 
a key component of CNNs and their immense 
success in image processing tasks such as seg-
mentation and classification.
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A common form of downsampling is max 
pooling, which propagates the maximum activa-
tion within a pooling region into a lower-resolu-
tion feature map. Successive pooling operations 
result in maps that have progressively lower reso-
lution but represent increasingly richer informa-
tion on the structure of interest (Fig 10b).

Convolutional Neural Networks
The first CNNs to employ back-propagation 
were used for handwritten digit recognition (21). 
These early CNNs were inspired by the Neo-
cognitron, an early neural network architecture 
capable of visual pattern recognition by combin-
ing layers of simple cells and complex cells (22). 
The design of the Neocognitron drew its biologic 
inspiration from the work of Hubel and Wiesel 
(23), who described these two types of cells in 
the visual primary cortex, a discovery for which 

they were awarded the Nobel Prize in Physiology 
and Medicine in 1981.

CNNs can compose features consisting of 
incrementally larger spatial extent. Near the input, 
we need to care about only local features, cap-
tured by convolutional kernels; distant interactions 
between pixels appear weak. The same pattern oc-
curs at every layer of representation in the model. 
In a CNN, the deeper the layer of representation, 
the coarser the characterization of the feature’s 
spatial position (due to downsampling/pooling); 
thus, kernels in these deeper layers consider fea-
tures over increasingly larger spatial scales.

Convolutional layers and activation func-
tions transform the feature maps, while down-
sampling/pooling layers reduce the spatial reso-
lution (Fig 11). In a typical network trained for 
classification, the coarse feature representation 
near the output of the network is typically 

Figure 10. A CNN creates an internal representation of a hierarchy of visual features by stacking con-
volutional layers. To capture an increasingly larger field of view, features maps are progressively spatially 
reduced by downsampling images. (a) The max pooling layer, typically used to achieve downsampling, 
propagates only the maximum activation to the next layer. Subsequent convolutional layers become less 
sensible to small shifts or distortion of the target object in the extracted feature maps. (b) Downsampled 
representations of the kidneys from contrast-enhanced CT. This operation not only substantially reduces 
the memory requirements but also allows the network to be robust to the shape and position of the 
detected kidneys (ie, features of interest) in the images.
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transformed into a vector form through fully 
connected layers. In a fully connected layer, 
each neuron is connected to all neurons in the 
previous layer. Fully connected layers allow 
reasoning about the entire content of the im-
age. For classification, the output nodes of a 
neural network can be regarded as a vector of 
unnormalized log probabilities for each class. 
A softmax function at the final layer of a CNN 
can be used to normalize the output of a neural 
network so that it parameterizes a categorical 
distribution for class probabilities.

Neural networks have a reputation for being 
inscrutable “black boxes” due to their complex-
ity and feature learning capability. However, 
certain strategies can be used to gain a bet-
ter understanding of the underlying decision 
process of a trained CNN. For instance, one 
may gain insight into the role played by a given 
feature map by inspecting the associated recep-
tive field in the image that caused the highest ac-
tivation (Fig 12). For example, one may observe 
that low-level feature maps are active when their 
receptive field is positioned over various types of 
edges and corners, while midlevel feature maps 
are active on parts of organs and high-level fea-
ture maps encapsulate information about whole 
organs and large structures (24).

Alternatively, the last layer of the network 
before the final classification layer (pre-softmax 
layer) also provides insight on the CNN. The 
pre-softmax layer represents the whole image as a 
high-dimensional feature vector (eg, 4096-element 
feature vector). Since it is impossible to directly 
visualize such a high-dimensional vector, we apply 
dimensionality-reduction techniques to project the 
vectors into a two-dimensional (2D) space that we 
can easily visualize. A common dimensionality-
reduction technique for this setting is t-stochastic 

neighbor embedding (t-SNE), which tends to pre-
serve euclidean distances; that is, nearby vectors in 
the high-dimensional space are close to each other 
in the low-dimensional projection (Fig 13).

Training the Model

Data
To train a model, we need data. There are two 
general types of machine learning approaches 
that differ in the type of data that is needed to 
train them: supervised learning and unsuper-
vised learning. With supervised learning, each 
example in the dataset is labeled. For instance, 
in a machine learning system for classifying renal 
tumors, a particular tumor image may be labeled 
“oncocytoma.”

In unsupervised learning, the data examples 
are not labeled (ie, images are not annotated); 
instead, the model aims to cluster images into 
groups based on their inherent variability. The 
machine learning algorithm then tries to dis-
cover some structure in the data that might later 
be used to solve some task (eg, classification or 
segmentation of tumors). However, completely 
unsupervised learning is an open-ended research 
problem for which achieving good results remains 
difficult in practice. A hybrid approach called 
semisupervised learning makes use of a large 
quantity of unlabeled data combined with a usu-
ally small number of labeled data examples (26).

The proper dataset size for adequately train-
ing deep learning models is variable and depends 
on the nature and complexity of the task. Deep 
learning methods scale well with the quantity 
of data and can often leverage extremely large 
data sets for good performance. Although a large 
quantity of data is desirable, obtaining high-qual-
ity labeled data can be costly and time-consum-

Figure 11. Integration of several concepts outlined in previous figures into a general diagram. Starting on the left, the input image 
is submitted to a series of convolutions with learned kernels, producing a stack of features maps containing low-level features such 
as edges and corners. These feature maps are then downsampled by a max pooling layer and further submitted to another set of 
learned convolutions, producing higher-level features such as parts of organs. Convolutions and max pooling layers can be stacked 
alternately until the network is deep enough to properly capture the structure of the image that is salient for the task at hand. Higher-
level features are typically flattened into a single vector to perform the final classification or regression for the target task.
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ing. For instance, completing a 20-minute image 
segmentation task on 1000 cases may require two 
experts to work full-time for 1 month.

The Table shows some examples of datasets 
used to train deep learning models in both the 
computer vision community and the medical 
imaging community; computer vision datasets are 
orders of magnitude larger than the medical im-
aging datasets. In some cases, the dataset acqui-
sition costs can be reduced by crowd-sourcing, 
but relying entirely on outsourced labels may be 
problematic. Crowd-sourcing was investigated in 
the setting of mitotic activity detection on histo-
logic slides of breast cancer cells (33).

Having small amounts of good-quality data is 
certainly better than having no data at all. Data 
augmentation can be used to artificially enlarge 
the size of a small dataset. The idea is to apply 
random transformations to the data that do not 
change the appropriateness of the label assign-
ments. Possible random transformations that can 
be applied to images include flipping, rotation, 
translation, zooming, skewing, and elastic defor-
mation. Hence, with data augmentation, image 
variants from an original dataset are created to 
enlarge the size of a training dataset of images 
presented to the deep learning models (34).

It is standard practice in machine learning to 
divide available data into three subsets: a training 
set, a validation set, and a test set. The training 
set is used to train and optimize the parameters 
of the neural network. This training involves 
repeatedly running training images through it 

and using the errors to adjust the weights of the 
network connections. The validation set is used to 
monitor the performance of the model during the 
training process; this dataset should also be used 
to perform model selection. The validation data 
are the best proxy we can have about the model 
performance on the test set. Once all the pa-
rameters of the model are fixed, we can measure 
its performance on the test set. This set is used 
only at the very end of a study to report the final 
model performance.

Learning
Designing neural network architectures requires 
consideration of numerous parameters that are 
not learned by the model (hyperparameters), 
such as the network topology, the number of 
filters at each layer, and the optimization param-
eters. Hyperparameters are typically selected 
through random search, a lengthy process where 
each configuration is instantiated and trained to 
establish which architecture performs best (35).

Once we have a proper dataset and a neural 
network architecture, we can proceed to learn-
ing the model parameters. An important machine 
learning pitfall is overfitting, where a model learns 
idiosyncratic statistical variations of the training set 
rather than generalizable patterns for a particular 
problem. Overfitting is usually detected by analysis 
of model accuracy on the training and validation 
sets (Fig 14). If the model performs well on the 
training set and poorly on the validation set, we 
say that the model has overfit the training data.

Figure 12. Stacking multiple convolutional and max pooling layers allows the model to learn a hierarchy of feature representations. 
While neurons close to the input image (a) will be activated by the presence of edges and corners formed by a few pixels, neurons 
located deeper in the network will be activated by combinations of edges and corners that represent characteristic parts of organs and 
eventually whole organs. At each successive level of representation, neurons gain a larger receptive field in the input image, as seen 
in b, c, and d. The final classification task thus relies on a rich set of hidden features that represent a large receptive field and integrate 
multiscale information in a meaningful way.
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If we evaluate the model extensively on the 
validation data, we can overfit both the training 
and validation data (ie, the model performs well 
on the training and validation sets but poorly on 
the test set). A model overfits because it has too 
many parameters and can memorize the training 
data at the expense of being able to generalize to 
new data. If the model is overfitting, we should 
consider reducing its capacity or flexibility (eg, 
reducing the number of parameters) or adding 
more data (eg, applying more aggressive data 
augmentation).

Technical Requirements

Hardware
End-to-end training of a modern deep learning 
model typically requires a great deal of computa-
tion. The success of deep CNNs was made possible 
by the development of inexpensive parallel comput-
ing hardware in the form of graphics processing 
units (GPUs). While GPUs were initially created 
for computer gaming, they have demonstrated their 
utility as a flexible hardware for general-purpose 
parallel computation and are typically considered 
essential for training large modern deep neural 
networks in a reasonable amount of time. The 
speedup in performance over using conventional 
central processing units is typically 10 times to 40 
times, allowing complex models consisting of tens 
of millions of parameters to be trained in a few days 
as opposed to weeks or months.

Software
Many software frameworks are now available 
for constructing and training multilayer neural 
networks (including convolutional networks). 
Frameworks such as Theano, Torch, TensorFlow, 
CNTK, Caffe, and Keras implement efficient 
low-level functions from which developers can 
describe neural network architectures with very 
few lines of code, allowing them to focus on 
higher-level architectural issues (36–40).

These libraries also allow researchers to ef-
ficiently tap into available computing resources 
such as GPUs. Most of these software tools are 
free and open-source, meaning that anyone can 
inspect and contribute to their codebase. By 
freely sharing code, models, data, and publica-
tions, the academic and industrial research com-
munities are collaborating on machine learning 
problems at an accelerating pace.

Clinical Applications of Deep Learning
Deep learning has demonstrated impressive 
performance on tasks related to natural images 
(ie, photographs). This technique was quickly 
adopted by the medical image processing com-

munity. A recently published survey revealed 
more than 300 applications of deep learning to 
medical images—most of which were published 
over the past year—from different imaging mo-
dalities (radiography, CT, MR imaging) (41).

This section focuses on recent applications 
of deep learning for classification, segmentation, 
and detection tasks. For each task, we provide a 
brief description, describe the training pipeline, 
summarize evaluation metrics, and provide ex-
amples of clinical applications.

Classification

Description.—Classification tasks in radiology 
typically consist of predicting some target class 
(eg, lesion category or condition) at the patient 
level from an image or region of interest. This 
task encompasses a wide range of applications, 
from determining the presence or absence of a 
disease to identifying the type of malignancy.

Training Pipeline.—Using deep learning, these 
tasks are commonly solved using CNNs. After 
forward propagation of input images, the softmax 
layer will produce a vector of class probabilities 
from which the highest value represents the pre-
dicted class.

Compared with traditional computer vision 
and machine learning algorithms, deep learn-
ing algorithms are data hungry. One of the 

Figure 13. t-SNE visualization. Map shows the distribution of 
the 4096-element vectors to which the training cases of ul-
trasonographic (US) images with organ labels were mapped. 
Areas of overlap correspond to potential areas of classification 
confusion. For instance, there is significant overlap between 
longitudinal (long) views of the left and right kidney and be-
tween longitudinal and transverse (trans) views of the right 
hepatic lobe. Maps like these provide insight into the perfor-
mance of the neural network classification (25).
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main challenges faced by the community is the 
scarcity of labeled medical imaging datasets. 
While millions of natural images can be tagged 
using crowd-sourcing (27), acquiring accurately 
labeled medical images is complex and expensive. 
Further, assembling balanced and representative 
training datasets can be daunting given the wide 
spectrum of pathologic conditions encountered 
in clinical practice.

To manage the scarcity of labeled images, a 
common strategy is to pretrain a CNN first on 
a task for which there is a sufficient amount of 
data available, a technique called transfer learn-
ing (Fig 15). Since models pretrained on the 
popular ImageNet challenge dataset are now 
widely available, many authors have achieved 
good performances by reusing pretrained 
generic architectures and fine-tuning the final 
layers of the network to fit a relatively small and 
specialized dataset (42).

Evaluation Metrics.—The performance of these 
models is typically assessed using accuracy: the 
ratio of correctly predicted samples over all predic-
tions. For tasks comprising multiple target classes, 
it is common in image classification competitions 
to report the top-five accuracy, a similar metric 
that assesses whether the correct label belongs to 
the five highest predicted class probabilities (16). 
One way to visualize the performance of the neural 
network is to generate a confusion matrix report-
ing predicted and true labels.

Applications.—Large-scale mining of a picture 
archiving and communication system (PACS) 
and a radiology information system (RIS) has 
been performed at the National Institutes of 
Health using a deep learning system to deter-
mine the semantic associations between images 
and reports. The researchers used a combina-
tion of unsupervised and supervised learning 
to train their system on 216 000 2D key images 
selected by radiologists for diagnostic refer-
ence. Transfer learning with natural images 
from ImageNet to medical imaging modalities 
(mostly CT and MR imaging) increased image 
classification performance.

Given new images from patient data acquisi-
tions, the system was able to predict semantic 
labels (topics and key words) pertaining to the 
content of the images (10), with top-one and top-
five accuracy values of 61%–66% and 93%–95%, 
respectively. Predictions at this level of semantic 
precision are likely not yet ready for integration 
into clinical practice; however, these directions 
show great promise for the future.

Segmentation

Description.—Segmentation can be defined as 
the identification of pixels or voxels composing 
an organ or structure of interest. From a ma-
chine learning perspective, it can be considered 
as a pixel-level classification task, where we aim 
to define whether a given pixel belongs to the 

Example Datasets Used for Natural Image Processing and Medical Image Processing Tasks

Image Database* Sample Size Type of Data Task

ImageNet (27) 1.4 million images Natural images (eg, 
plants, flowers, ani-
mals, vehicles)

Classification of objects in 
natural images, 1000 classes

MNIST (28) 70 000 thumbnail images (60 000 
training, 10 000 testing)

Handwritten digits Classification between 0 and 9

Pascal VOC 2012 
(29)

~10 000 images Natural images Segmentation of objects in 
natural images, 20 classes

YouTube-8M (30) 8 million videos YouTube video URLs Classification of video topics, 
4800 classes

BRATS 2016 (31) 300 cases, four raters Brain MR images Segmentation of brain tumors 
on MR images (T1W, T1W 
CE, T2W, T2W FLAIR)

EM ISBI 2012 (32) 30 slices for training, 30 slices for 
testing

Electron micrographs Segmentation of neurons

Shin et al (10) Radiology reports from 780 000 
imaging examinations, 216 000 
annotated images

Radiology images and 
reports (private)

Correlate high-level topics and 
presence of common dis-
eases with medical images

Note.—The size of datasets required to train a model is specific to every task but can amount to a large quantity 
of labeled data. CE = contrast-enhanced, FLAIR = fluid-attenuated inversion-recovery, T1W = T1-weighted, 
T2W = T2-weighted, URL = uniform resource locator.
*Numbers in parentheses are references.
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background or to a target class (eg, prostate, 
liver, lesions). Image masks resulting from this 
classification can subsequently be used to per-
form various quantitative analyses such as virtual 
surgery planning, radiation therapy planning, or 
quantitative lesion follow-up.

Training Pipeline.—There are two deep learning 
approaches to image segmentation. The first is a 
patch-based approach where the center pixel of a 
patch is classified; the whole segmentation map 
can be obtained by applying the model in a slid-
ing-window fashion over the whole image and pro-
gressively building the output segmentation mask 
by segmenting the central pixel of each patch. This 
simple approach requires many model evaluations 
to obtain a segmentation map for a single image 
and thus is computationally inefficient.

A second approach is based on a CNN that 
directly produces a full-resolution segmentation 
output (Fig 16). While CNNs typically consist of 
a contracting path composed of convolutional, 
downsampling, and fully connected layers, in 
this segmentation model the fully connected 
layers are replaced by an expanding path, which 
also recovers the spatial information lost dur-
ing the downsampling operations. In most cases, 
the expanding path is built with (a) upsampling 

operations, responsible for increasing the spatial 
resolution of feature maps, and (b) skip con-
nections, used to pass the information from the 
contracting path of the network (bypassing the 
deeper layers). This architecture is known as the 
U-net (because of its U-shaped architecture) 
and is currently broadly used in medical image 
segmentation approaches (43,44).

Evaluation Metrics.—Pixel-wise classification 
accuracy is a poor metric for segmentation, since 
most pixels in an image do not contain the target 
class (eg, liver). Moreover, it does not account for 
the variability in size of different lesions and does 
not faithfully reflect the segmentation quality. 
Therefore, most authors will report metrics based 
on the intersection over union of the segmenta-
tion mask against a ground-truth segmentation 
mask created by an expert. In the medical field, 
the Dice score is commonly used as an evaluation 
metric and takes a value of 0 when both masks 
do not overlap at all and 1 for a perfect overlap.

Applications.—Automated liver and tumor 
segmentation from CT and MR imaging has 
been reported using cascaded fully convolutional 
CNNs. The first network segmented the liver, 
and the second network segmented lesions within 

Figure 14. Training curves. Training a neural network involves repeatedly computing the forward propagation 
of batches of training images and back-propagating the loss to adjust the weights of the network connections. 
We can monitor the progress of training by plotting the training loss for each batch, which decreases toward 
zero, and the training accuracy, which increases toward 100%. It is also customary to evaluate the loss and the 
accuracy on the validation set every time the network runs through the entire training dataset (every epoch). The 
training of a neural network will typically be halted once the validation accuracy has not improved for a given 
number of epochs (eg, five epochs). The state of the model that yielded the best performance on the validation 
set is then used to compute the final results on a separate test set.
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the liver. Training was performed on 100 CT ex-
aminations. Dice scores over 94% were reported 
for the liver segmentations. Remarkably, the 
model was sufficiently robust to work on 38 MR 
imaging examinations (45).

Automated prostate segmentation from MR 
images using three-dimensional (3D) CNNs has 
been reported. Training was based on 50 MR im-
aging examinations from the Prostate MR Image 
Segmentation challenge dataset (46). An archi-
tecture using long and short residual connections 
improved the segmentation performance, achiev-
ing Dice scores of 81%–87%.

Detection

Description.—Detection of focal lesions such as 
lung nodules, hepatic lesions, or colon polyps 
is a prerequisite before characterization by a 
radiologist. While classification tasks aim to 
predict labels, detection tasks aim to predict the 
location of potential lesions, often in the form 
of points, regions, or bounding boxes of inter-
est. From a machine learning perspective, these 
three types of outputs give rise to three different 
approaches to detection.

It can be viewed as a classification task, where 
a preidentified set of candidate patches sampled 
around points of interest are further classified 
as positive (eg, malignant lesion) or negative 
(benign lesion, normal parenchyma) samples. 
As seen earlier, it can be directly considered as a 

segmentation task, in which detection becomes 
implicit as individual connected areas of the 
resulting mask are considered detected samples. 
Finally, it can be considered as a regression task, 
where the coordinates of bounding boxes outlin-
ing target objects are directly inferred from the 
input image, a technique broadly applied for 
natural images (47). In this section, we focus on 
the first approach.

Training Pipeline.—When classifying voxels 
in a volume for detection or segmentation, a 
common challenge is that the target class tends 
to have relatively few examples, whereas the 
background class tends to be more numerous 
and more variable. A common strategy to train 
a CNN for detection in this setting is to gener-
ate a surrogate dataset based on small patches 
extracted from the original images. Patches will 
typically be sampled in equal number from the 
target class and the background class, providing 
a simple mechanism to mitigate the class imbal-
ance naturally occurring in detection tasks.

A CNN is then trained on this patch dataset as 
if it were a classification task. It can subsequently 
be applied (a) in a sliding-window fashion across 
an input image or (b) on a subset of preselected 
image patches previously obtained with a sensi-
tive candidate selection method (Fig 17). By 
casting the detection task as a classification one, 
pretrained architectures can again be leveraged to 
achieve good performances with small datasets.

Figure 15.  Transfer learning. Training CNNs for medical images can be challenging owing to the relative lack of large labeled medi-
cal image datasets for training and testing. One approach to solve this problem is transfer learning, where a network is initialized using 
weights derived from training on a large dataset; only a portion of the network (typically the final fully connected [FC] layers, outlined 
in light blue) needs to be retrained for a new smaller dataset. The underlying assumption is that basic image features may be shared 
among seemingly disparate datasets. The height and width of blue boxes respectively represent the resolution and number of feature 
maps resulting from the current layer operation. Cv = convolution, MP = max pooling.
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Evaluation Metrics.—In this setting, reporting 
performance on the basis of accuracy is not very in-
formative, since most of the image contains normal 
tissue (true negative), which is likely to overshadow 
missed lesions (false negative). It is therefore com-
mon to report a combination of evaluation metrics 
that do not account for true negatives, such as 
sensitivity (also known as true-positive rate), posi-
tive predictive value (also known as precision in 
computer science), F score, and average false-posi-
tive per patient. To explore various operating point 
trade-offs of the trained model, it is also common to 
report—instead of the traditional receiver operat-
ing characteristic (ROC) curve—the free-response 
ROC curve (FROC) (48), which plots the lesion 
localization ratio against the nonlesion detection 
ratio for various cutoff points.

Applications.—Automated detection of malignant 
lesions on screening mammograms using deep 
CNNs has been reported. The training dataset 

included 44 090 mammographic images obtained 
as part of a screening program (6). The area under 
the ROC curve (AUC) was 0.93 for the CNN, 
0.91 for the reference CAD (computer-aided 
diagnosis) system, and 0.84–0.88 for three human 
readers. Another team reported similar findings, 
with AUCs of 0.82 for a deep CNN and 0.77–
0.87 for radiologists, although the radiologists' 
results were consistently less sensitive and more 
specific than those of the neural network (5).

Automated detection of cerebral microbleeds 
on susceptibility-weighted MR images using a 
cascade of two CNNs has been reported. The 
first one, a fully convolutional network, was 
aimed at providing a probability map of candi-
date locations with very high sensitivity. This high 
sensitivity was achieved by continually training 
on samples classified as false negative. The sec-
ond one, a 3D CNN trained solely on a balanced 
subset of extracted 3D patches and false-positive 
samples (eg, flow voids, calcifications, cavernous 

Figure 17. Training with patches. Detection tasks in the medical field are commonly solved by training convolutional networks 
on a surrogate dataset composed of small patches extracted from the original images. For volumetric modalities, different sampling 
strategies can be used to integrate 3D contextual information, such as using 3D patches or cross-like 2.5D patches. Patches are typi-
cally sampled in equal number from both classes to mitigate the class imbalance naturally occurring in detection tasks. Just as for 
classification, the CNN can be pretrained on an existing database and fine-tuned for the target application. Cv = convolution, FC = 
fully connected, MP = max pooling.

Figure 16. Lesion segmentation. A particular architecture of CNNs called the U-net is designed to output complete segmentation 
masks from input images. By expanding the max pooling (MP) layers with corresponding upsampling (US) layers, the output dimen-
sion of the final classification layer matches the dimension of the original input image. Skip connections connect the contracting path 
(left) with the expanding path (right). Cv = convolution.
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malformations), was able to achieve high speci-
ficity. Using this two-stage strategy to manage 
class imbalance yielded a system able to achieve 
a sensitivity of 93% while maintaining an average 
of 2.74 false positives per subject (49).

Various detection tasks have been performed 
with CNNs, such as coronary calcification de-
tection with gated CT angiography (50), lung 
nodule detection with CT (51), and lymph node 
detection (42). To integrate 3D contextual infor-
mation when working with volumetric modali-
ties, patches sampled from different anatomic 
orientation planes can be aggregated and used as 
multichannel inputs (42).

Limitations of Deep Learning
Despite the variety of recent successes of deep 
learning, there are limitations in the application 
of the technique. First, deep learning is not the 
optimal machine learning technique for all data 
analysis problems. For problems in which data 
are well structured or optimal features are well-
defined, other simpler machine learning methods 
such as logistic regression, support vector ma-
chines, and random forests are typically easier to 
apply and more effective (52).

Even in computer vision, where CNNs have 
become a dominant method, there are important 
limitations for deep learning. The most prominent 
limitation is that deep learning is an intensely data-
hungry technology; learning weights for a large 
network from scratch requires a very large number 
of labeled examples to achieve accurate classifica-
tion. However, unlike traditional approaches to 
computer vision and machine learning, which do 
not scale well with dataset size, deep learning does 
scale well with large datasets.

As noted earlier, transfer learning has recently 
received research attention as a potentially ef-
fective way of mitigating the data requirements. 
However, current projects applying transfer 
learning typically reuse weights from networks 
trained on ImageNet, a large labeled collection of 
relatively low-resolution 2D color photographs. 
Applications in radiology would be expected to 
process higher-resolution volumetric images with 
higher bit depths, for which pretrained networks 
are not yet readily available.

As a result, building large labeled public medi-
cal image datasets is an important step for further 
progress in applying deep learning to radiology. 
Barriers to this effort include privacy concerns 
for clinical images, as well as the costs and dif-
ficulties of obtaining accurate ground-truth labels 
from multiple experts or pathology diagnoses. 
Nevertheless, several efforts are under way to cre-
ate large datasets of labeled medical images, such 
as the Cancer Imaging Archive (53).

The creation of these large databases of la-
beled medical images and many associated chal-
lenges (54) will be fundamental to foster future 
research in deep learning applied to medical im-
ages. It is also possible that further breakthroughs 
in deep learning methods can significantly reduce 
the data requirements for training deep learning 
systems; after all, humans do not require nearly 
as many labeled examples as current deep learn-
ing systems to learn to perform accurate image 
classification and interpretation.

Another limitation of deep learning systems 
is that they are relatively opaque compared with 
other machine learning methods. Despite the use-
ful application of visualization techniques involv-
ing deconvolution and dimensionality reduction, 
it remains difficult to clearly define what different 
parts of a large network do, making it challenging 
to delineate limitations in the network or debug 
errors in image interpretation without a large com-
prehensive set of test examples.

One could argue that an accurate opaque 
system is preferable to an inaccurate transparent 
one, and that a human expert’s image analysis 
can similarly be relatively opaque to a nonexpert. 
Nevertheless, it is currently much easier to inter-
rogate a human expert’s thought process than 
to decipher the inner workings of a deep neural 
network with millions of weights. Furthermore, 
an automated system’s ability to clearly justify 
its analysis would be highly desirable for it to 
become widely acceptable for making critical 
judgments regarding patients’ health.

Deep learning systems currently excel in emu-
lating the kind of human judgment that is based 
purely on pattern recognition, where the most 
informative patterns can be discerned from previ-
ous training. However, no finite training set can 
fully represent the variety of cases that might be 
seen in clinical practice. More complex radiology 
interpretation problems typically require deduc-
tive reasoning using knowledge of pathologic 
processes and selective integration of information 
from prior examinations or the patient’s health 
record. It is presently not clear how to train a 
deep learning system to emulate these more com-
plex thought processes.

Future Directions
The role of deep learning and its application to the 
practice of radiology must still be defined. Deep 
learning systems may be conceived as a new form 
of diagnostic test with various clinical usage sce-
narios (55). A triage approach would run these au-
tomated image analysis systems in the background 
to detect life-threatening conditions or search 
through large amounts of clinical, genomic, or 
imaging data (56). A replacement approach would 
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use these systems for generating figure captions 
(57) or even fully automated interpretation of 
imaging examinations (56). An add-on approach 
would support the radiologist by performing time-
consuming tasks such as lesion segmentation to 
assess total tumor burden (45).

Conclusion
Artificial neural networks have been used in 
artificial intelligence since the 1950s. Advances 
in training techniques and network architec-
tures, combined with the recent availability 
of large amounts of labeled data and power-
ful parallel computing hardware, have enabled 
rapid development of deep learning algorithms. 
Deep learning is a powerful and generic artifi-
cial intelligence technique that can solve image 
detection, recognition, and classification tasks 
that previously required human intelligence. The 
introduction of deep learning techniques in radi-
ology will likely assist radiologists in a variety of 
diagnostic tasks. Familiarity with the concepts, 
strengths, and limitations of computer-assisted 
techniques based on deep learning is critical to 
ensure optimal patient care.
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